このページは、まだ日本語ではご利用いただけません。翻訳中です。
古いプラグインバージョンのドキュメントを閲覧しています。
基本構成例
以下の例では、ai-semantic-prompt-guard
プラグインをserviceで有効にするための一般的な設定をご紹介します。
次のリクエストを行います。
curl -X POST http://localhost:8001/services/{serviceName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer <OPENAI_API_TOKEN>"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about Kong"
]
}
}
}
'
SERVICE_NAME | IDを、このプラグイン構成の対象となるサービスの idまたはnameに置き換えてください。 |
独自のアクセストークン、リージョン、コントロールプレーンID、サービスIDを代入して、次のリクエストを行ってください。
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/services/{serviceId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-semantic-prompt-guard","config":{"embeddings":{"auth":{"header_name":"Authorization","header_value":"Bearer <OPENAI_API_TOKEN>"},"model":{"name":"text-embedding-3-small","provider":"openai"}},"search":{"threshold":0.7},"vectordb":{"strategy":"redis","distance_metric":"cosine","threshold":0.5,"dimensions":1024,"redis":{"host":"localhost","port":6379}},"rules":{"match_all_conversation_history":true,"allow_prompts":["Questions about Kong"]}}}'
地域固有のURLと個人アクセストークンの詳細については、 Konnect API referenceをご参照ください。
まず、KongPlugin リソースを作成します:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard-example
plugin: ai-semantic-prompt-guard
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
" | kubectl apply -f -
次に、次のようにserviceに注釈を付けて、KongPluginリソースをイングレスに適用します。
kubectl annotate service SERVICE_NAME konghq.com/plugins=ai-semantic-prompt-guard-example
SERVICE_NAMEを、このプラグイン構成が対象とするサービスの名前に置き換えます。 kubectl get serviceを実行すると、利用可能なイングレスを確認できます。
注: KongPluginリソースは一度だけ定義するだけで、ネームスペース内の任意のサービス、コンシューマー、またはルートに適用できます。プラグインをクラスター全体で利用可能にしたい場合は、KongPlugin
の代わりにKongClusterPlugin
としてリソースを作成してください。
このセクションを宣言型構成ファイルに追加します。
plugins:
- name: ai-semantic-prompt-guard
service: SERVICE_NAME|ID
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
SERVICE_NAME | IDを、このプラグイン構成の対象となるサービスの idまたはnameに置き換えてください。 |
前提条件: パーソナルアクセストークンの設定
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Kong Konnectゲートウェイプラグインを作成するには、Terraform 構成に以下を追加します。
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer <OPENAI_API_TOKEN>"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about Kong"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
service = {
id = konnect_gateway_service.my_service.id
}
}
以下の例では、ai-semantic-prompt-guard
プラグインをrouteで有効にするための一般的な設定をご紹介します。
次のリクエストを行います。
curl -X POST http://localhost:8001/routes/{routeName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer <OPENAI_API_TOKEN>"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about Kong"
]
}
}
}
'
ROUTE_NAME | IDを、このプラグイン構成が対象とするルートのid またはnameに置き換えてください。 |
独自のアクセストークン、リージョン、コントロールプレーン(CP)ID、ルートIDを代入して、次のリクエストをしてください。
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/routes/{routeId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-semantic-prompt-guard","config":{"embeddings":{"auth":{"header_name":"Authorization","header_value":"Bearer <OPENAI_API_TOKEN>"},"model":{"name":"text-embedding-3-small","provider":"openai"}},"search":{"threshold":0.7},"vectordb":{"strategy":"redis","distance_metric":"cosine","threshold":0.5,"dimensions":1024,"redis":{"host":"localhost","port":6379}},"rules":{"match_all_conversation_history":true,"allow_prompts":["Questions about Kong"]}}}'
地域固有のURLと個人アクセストークンの詳細については、 Konnect API referenceをご参照ください。
まず、KongPlugin リソースを作成します:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard-example
plugin: ai-semantic-prompt-guard
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
" | kubectl apply -f -
次に、次のようにingressに注釈を付けて、KongPluginリソースをイングレスに適用します。
kubectl annotate ingress INGRESS_NAME konghq.com/plugins=ai-semantic-prompt-guard-example
INGRESS_NAMEを、このプラグイン構成がターゲットとするイングレス名に置き換えます。 kubectl get ingressを実行すると、利用可能なイングレスを確認できます。
注: KongPluginリソースは一度だけ定義するだけで、ネームスペース内の任意のサービス、コンシューマー、またはルートに適用できます。プラグインをクラスター全体で利用可能にしたい場合は、KongPlugin
の代わりにKongClusterPlugin
としてリソースを作成してください。
このセクションを宣言型構成ファイルに追加します。
plugins:
- name: ai-semantic-prompt-guard
route: ROUTE_NAME|ID
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
ROUTE_NAME | IDを、このプラグイン構成が対象とするルートのid またはnameに置き換えてください。 |
前提条件: パーソナルアクセストークンの設定
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Kong Konnectゲートウェイプラグインを作成するには、Terraform 構成に以下を追加します。
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer <OPENAI_API_TOKEN>"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about Kong"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
route = {
id = konnect_gateway_route.my_route.id
}
}
以下の例では、ai-semantic-prompt-guard
プラグインをconsumerで有効にするための一般的な設定をご紹介します。
次のリクエストを行います。
curl -X POST http://localhost:8001/consumers/{consumerName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer <OPENAI_API_TOKEN>"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about Kong"
]
}
}
}
'
CONSUMER_NAME | IDを、このプラグイン構成の対象となるコンシューマのidまたはnameに置き換えてください。 |
独自のアクセストークン、リージョン、コントロールプレーンID、コンシューマーIDを代入して、次のリクエストをしてください。
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumers/{consumerId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-semantic-prompt-guard","config":{"embeddings":{"auth":{"header_name":"Authorization","header_value":"Bearer <OPENAI_API_TOKEN>"},"model":{"name":"text-embedding-3-small","provider":"openai"}},"search":{"threshold":0.7},"vectordb":{"strategy":"redis","distance_metric":"cosine","threshold":0.5,"dimensions":1024,"redis":{"host":"localhost","port":6379}},"rules":{"match_all_conversation_history":true,"allow_prompts":["Questions about Kong"]}}}'
地域固有のURLと個人アクセストークンの詳細については、 Konnect API referenceをご参照ください。
まず、KongPlugin リソースを作成します:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard-example
plugin: ai-semantic-prompt-guard
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
" | kubectl apply -f -
次に、次のようにKongConsumerオブジェクトに注釈を付けて、KongPluginリソースをイングレスに適用します。
kubectl annotate KongConsumer CONSUMER_NAME konghq.com/plugins=ai-semantic-prompt-guard-example
CONSUMER_NAMEを、このプラグイン構成が対象とするコンシューマーの名前に置き換えます。 kubectl get KongConsumerを実行すると、利用可能なコンシューマを確認できます。
KongConsumerオブジェクトの詳細については、 コンシューマと認証情報のプロビジョニングをご参照ください。
注: KongPluginリソースは一度だけ定義するだけで、ネームスペース内の任意のサービス、コンシューマー、またはルートに適用できます。プラグインをクラスター全体で利用可能にしたい場合は、KongPlugin
の代わりにKongClusterPlugin
としてリソースを作成してください。
このセクションを宣言型構成ファイルに追加します。
plugins:
- name: ai-semantic-prompt-guard
consumer: CONSUMER_NAME|ID
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
CONSUMER_NAME | IDを、このプラグイン構成の対象となるコンシューマのidまたはnameに置き換えてください。 |
前提条件: パーソナルアクセストークンの設定
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Kong Konnectゲートウェイプラグインを作成するには、Terraform 構成に以下を追加します。
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer <OPENAI_API_TOKEN>"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about Kong"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
consumer = {
id = konnect_gateway_consumer.my_consumer.id
}
}
以下の例では、ai-semantic-prompt-guard
プラグインをconsumer groupで有効にするための一般的な設定をご紹介します。
次のリクエストを行います。
curl -X POST http://localhost:8001/consumer_groups/{consumerGroupName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer <OPENAI_API_TOKEN>"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about Kong"
]
}
}
}
'
CONSUMER_GROUP_NAME | IDを、このプラグイン構成の対象となるコンシューマグループのidまたはnameに置き換えてください。 |
独自のアクセストークン、リージョン、コントロールプレーンID、コンシューマーグループIDを代入して、次のリクエストをします:
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumer_groups/{consumerGroupId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-semantic-prompt-guard","config":{"embeddings":{"auth":{"header_name":"Authorization","header_value":"Bearer <OPENAI_API_TOKEN>"},"model":{"name":"text-embedding-3-small","provider":"openai"}},"search":{"threshold":0.7},"vectordb":{"strategy":"redis","distance_metric":"cosine","threshold":0.5,"dimensions":1024,"redis":{"host":"localhost","port":6379}},"rules":{"match_all_conversation_history":true,"allow_prompts":["Questions about Kong"]}}}'
地域固有のURLと個人アクセストークンの詳細については、 Konnect API referenceをご参照ください。
まず、KongPlugin リソースを作成します:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard-example
plugin: ai-semantic-prompt-guard
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
" | kubectl apply -f -
次に、次のようにKongConsumerGroupオブジェクトに注釈を付けて、KongPluginリソースをイングレスに適用します。
kubectl annotate KongConsumerGroup CONSUMER_GROUP_NAME konghq.com/plugins=ai-semantic-prompt-guard-example
CONSUMER_GROUP_NAMEを、このプラグイン構成が対象とするコンシューマグループの名前に置き換えます。 kubectl get KongConsumerGroupを実行すると、利用可能なコンシューマグループを確認できます。
注: KongPluginリソースは一度だけ定義する必要があり、 名前空間内の任意のサービス、コンシューマ、コンシューマグループ、またはルートに適用できます。プラグインをクラスタ全体で利用できるようにする場合は、KongPlugin
の代わりにKongClusterPlugin
リソースを作成します。
このセクションを宣言型構成ファイルに追加します。
plugins:
- name: ai-semantic-prompt-guard
consumer_group: CONSUMER_GROUP_NAME|ID
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
CONSUMER_GROUP_NAME | IDを、このプラグイン構成の対象となるコンシューマグループのidまたはnameに置き換えてください。 |
前提条件: パーソナルアクセストークンの設定
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Kong Konnectゲートウェイプラグインを作成するには、Terraform 構成に以下を追加します。
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer <OPENAI_API_TOKEN>"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about Kong"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
consumer_group = {
id = konnect_gateway_consumer_group.my_consumer_group.id
}
}
どのサービス、ルート、コンシューマー、コンシューマーグループにも関連しないプラグインは_global_とみなされ、 すべてのリクエストで実行されます。
- 自己管理型のKong Gateway Enterpriseでは、プラグインは特定のワークスペース内のすべてのエンティティに適用されます。
- セルフマネージドKong Gateway (OSS)では、プラグインは環境全体に適用されます。
- Konnectでは、プラグインは特定のコントロールプレーン(CP)内のすべてのエンティティに適用されます。
詳しくはプラグインリファレンスとプラグインの優先順位の セクションをご覧ください。
以下の例では、AI Semantic Prompt Guard
プラグインをグローバルに有効にするための典型的な設定をいくつかご紹介します。
次のリクエストを行います。
curl -X POST http://localhost:8001/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer <OPENAI_API_TOKEN>"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about Kong"
]
}
}
}
'
独自のアクセストークン、リージョン、コントロールプレーン(CP)IDを代入して、次のリクエストをしてください。
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-semantic-prompt-guard","config":{"embeddings":{"auth":{"header_name":"Authorization","header_value":"Bearer <OPENAI_API_TOKEN>"},"model":{"name":"text-embedding-3-small","provider":"openai"}},"search":{"threshold":0.7},"vectordb":{"strategy":"redis","distance_metric":"cosine","threshold":0.5,"dimensions":1024,"redis":{"host":"localhost","port":6379}},"rules":{"match_all_conversation_history":true,"allow_prompts":["Questions about Kong"]}}}'
地域固有のURLと個人アクセストークンの詳細については、 Konnect API referenceをご参照ください。
KongClusterPlugin作成する リソースを作成し、グローバルとしてラベル付けします。
apiVersion: configuration.konghq.com/v1
kind: KongClusterPlugin
metadata:
name: <global-ai-semantic-prompt-guard>
annotations:
kubernetes.io/ingress.class: kong
labels:
global: "true"
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
plugin: ai-semantic-prompt-guard
宣言型構成ファイルにplugins
エントリを追加します。
plugins:
- name: ai-semantic-prompt-guard
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer <OPENAI_API_TOKEN>
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about Kong
前提条件: パーソナルアクセストークンの設定
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Kong Konnectゲートウェイプラグインを作成するには、Terraform 構成に以下を追加します。
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer <OPENAI_API_TOKEN>"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about Kong"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
}