コンテンツにスキップ
Kong Logo | Kong Docs Logo
  • ドキュメント
    • API仕様を確認する
      View all API Specs すべてのAPI仕様を表示 View all API Specs arrow image
    • ドキュメンテーション
      API Specs
      Kong Gateway
      軽量、高速、柔軟なクラウドネイティブAPIゲートウェイ
      Kong Konnect
      SaaSのエンドツーエンド接続のための単一プラットフォーム
      Kong AI Gateway
      GenAI インフラストラクチャ向けマルチ LLM AI Gateway
      Kong Mesh
      Kuma と Envoy をベースにしたエンタープライズサービスメッシュ
      decK
      Kongの構成を宣言型で管理する上で役立ちます
      Kong Ingress Controller
      Kubernetesクラスタ内で動作し、Kongをプロキシトラフィックに設定する
      Kong Gateway Operator
      YAMLマニフェストを使用してKubernetes上のKongデプロイメントを管理する
      Insomnia
      コラボレーティブAPI開発プラットフォーム
  • Plugin Hub
    • Plugin Hubを探索する
      View all plugins すべてのプラグインを表示 View all plugins arrow image
    • 機能性 すべて表示 View all arrow image
      すべてのプラグインを表示
      AI's icon
      AI
      マルチ LLM AI Gatewayプラグインを使用してAIトラフィックを管理、保護、制御する
      認証's icon
      認証
      認証レイヤーでサービスを保護する
      セキュリティ's icon
      セキュリティ
      追加のセキュリティレイヤーでサービスを保護する
      トラフィック制御's icon
      トラフィック制御
      インバウンドおよびアウトバウンドAPIトラフィックの管理、スロットル、制限
      サーバーレス's icon
      サーバーレス
      他のプラグインと組み合わせてサーバーレス関数を呼び出します
      分析と監視's icon
      分析と監視
      APIとマイクロサービストラフィックを視覚化、検査、監視
      変革's icon
      変革
      Kongでリクエストとレスポンスをその場で変換
      ログ記録's icon
      ログ記録
      インフラストラクチャに最適なトランスポートを使用して、リクエストと応答データをログに記録します
  • サポート
  • コミュニティ
  • Kongアカデミー
デモを見る 無料トライアルを開始
Kong Mesh
2.5.x
  • Home icon
  • Kong Mesh
  • Networking
  • Transparent Proxying
report-issue問題を報告する
  • Kong Gateway
  • Kong Konnect
  • Kong Mesh
  • Kong AI Gateway
  • Plugin Hub
  • decK
  • Kong Ingress Controller
  • Kong Gateway Operator
  • Insomnia
  • Kuma

  • ドキュメント投稿ガイドライン
  • 2.10.x (latest)
  • 2.9.x
  • 2.8.x
  • 2.7.x (LTS)
  • 2.6.x
  • 2.5.x
  • 2.4.x
  • 2.3.x
  • 2.2.x
  • Introduction
    • About service meshes
    • Overview of Kong Mesh
    • How Kong Mesh works
    • Architecture
    • Stages of software availability
    • Version support policy
    • Mesh requirements
    • Release notes
  • Getting Started
  • Kong Mesh in Production
    • Overview
    • Deployment topologies
      • Overview
      • Standalone deployment
      • Multi-zone deployment
    • Install kumactl
    • Use Kong Mesh
    • Control plane deployment
      • Kong Mesh license
      • Deploy a standalone control plane
      • Deploy a multi-zone global control plane
      • Zone Ingress
      • Zone Egress
      • Configure zone proxy authentication
      • Control plane configuration reference
      • Systemd
      • Kubernetes
    • Create multiple service meshes in a cluster
    • Data plane configuration
      • Data plane proxy
      • Configure the data plane on Kubernetes
      • Configure the data plane on Universal
      • Configure the Kong Mesh CNI
      • Configure transparent proxying
      • IPv6 support
    • Secure your deployment
      • Manage secrets
      • Authentication with the API server
      • Authentication with the data plane proxy
      • Configure data plane proxy membership
      • Secure access across services
      • Kong Mesh RBAC
      • FIPS support
    • Kong Mesh user interface
    • Upgrades and tuning
      • Upgrade Kong Mesh
      • Performance fine-tuning
  • Deploy
    • Explore Kong Mesh with the Kubernetes demo app
    • Explore Kong Mesh with the Universal demo app
  • Explore
    • Gateway
      • Delegated
      • Builtin
    • CLI
      • kumactl
    • Observability
      • Demo setup
      • Control plane metrics
      • Configuring Prometheus
      • Configuring Grafana
      • Configuring Datadog
      • Observability in multi-zone
    • Inspect API
      • Matched policies
      • Affected data plane proxies
      • Envoy proxy configuration
    • Kubernetes Gateway API
      • Installation
      • Gateways
      • TLS termination
      • Customization
      • Multi-mesh
      • Multi-zone
      • GAMMA
      • How it works
  • Networking
    • Service Discovery
    • DNS
      • How it works
      • Installation
      • Configuration
      • Usage
    • Non-mesh traffic
      • Incoming
      • Outgoing
    • Transparent Proxying
  • Monitor & manage
    • Dataplane Health
      • Circuit Breaker Policy
      • Kubernetes and Universal Service Probes
      • Health Check Policy
    • Control Plane Configuration
      • Modifying the configuration
      • Inspecting the configuration
      • Store
  • Policies
    • Introduction
    • General notes about Kong Mesh policies
    • Applying Policies
    • How Kong Mesh chooses the right policy to apply
    • Understanding TargetRef policies
    • Protocol support in Kong Mesh
    • Mutual TLS
      • Usage of "builtin" CA
      • Usage of "provided" CA
      • Permissive mTLS
      • Certificate Rotation
    • Traffic Permissions
      • Usage
      • Access to External Services
    • Traffic Route
      • Usage
    • Traffic Metrics
      • Expose metrics from data plane proxies
      • Expose metrics from applications
      • Override Prometheus settings per data plane proxy
      • Filter Envoy metrics
      • Secure data plane proxy metrics
    • Traffic Trace
      • Add a tracing backend to the mesh
      • Add TrafficTrace resource
    • Traffic Log
      • Add a logging backend
      • Add a TrafficLog resource
      • Logging external services
      • Builtin Gateway support
      • Access Log Format
    • Locality-aware Load Balancing
      • Enabling locality-aware load balancing
    • Fault Injection
      • Usage
      • Matching
    • Health Check
      • Usage
      • Matching
    • Circuit Breaker
      • Usage
      • Matching
      • Builtin Gateway support
      • Non-mesh traffic
    • External Service
      • Usage
      • Builtin Gateway support
    • Retry
      • Usage
      • Matching
      • Builtin Gateway support
    • Timeout
      • Usage
      • Configuration
      • Default general-purpose Timeout policy
      • Matching
      • Builtin Gateway support
      • Inbound timeouts
      • Non-mesh traffic
    • Rate Limit
      • Usage
      • Matching destinations
      • Builtin Gateway support
    • Virtual Outbound
      • Examples
    • MeshGateway
      • TLS Termination
    • MeshGatewayRoute
      • Listener tags
      • Matching
      • Filters
      • Reference
    • MeshGatewayInstance
    • Service Health Probes
      • Kubernetes
      • Universal probes
    • MeshAccessLog
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshCircuitBreaker
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshFaultInjection
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshHealthCheck
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshHTTPRoute
      • TargetRef support matrix
      • Configuration
      • Examples
      • Merging
    • MeshProxyPatch
      • TargetRef support matrix
      • Configuration
      • Examples
      • Merging
    • MeshRateLimit
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshRetry
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshTCPRoute
      • TargetRef support matrix
      • Configuration
      • Examples
      • Route policies with different types targeting the same destination
    • MeshTimeout
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshTrace
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshTrafficPermission
      • TargetRef support matrix
      • Configuration
      • Examples
    • MeshLoadBalancingStrategy
      • TargetRef support matrix
      • Configuration
      • Examples
    • OPA policy
    • MeshOPA (beta)
    • MeshGlobalRateLimit (beta)
  • Enterprise Features
    • Overview
    • HashiCorp Vault CA
    • Amazon ACM Private CA
    • cert-manager Private CA
    • OPA policy support
    • MeshOPA (beta)
    • Multi-zone authentication
    • FIPS support
    • Certificate Authority rotation
    • Role-Based Access Control
    • Red Hat
      • UBI Images
      • Red Hat OpenShift Quickstart
    • Windows Support
    • ECS Support
    • Auditing
    • MeshGlobalRateLimit (beta)
  • Reference
    • HTTP API
    • Kubernetes annotations and labels
    • Kuma data collection
    • Control plane configuration reference
    • Envoy proxy template
  • Community
    • Contribute to Kuma
enterprise-switcher-icon 次に切り替える: OSS
On this pageOn this page
  • What is Transparent Proxying?
  • A life without Transparent Proxying
  • How it works
    • Inbound TCP Traffic
    • Outbound TCP Traffic

このページは、まだ日本語ではご利用いただけません。翻訳中です。

旧バージョンのドキュメントを参照しています。 最新のドキュメントはこちらをご参照ください。

Transparent Proxying

What is Transparent Proxying?

A transparent proxy is a type of server that can intercept network traffic to and from a service without changes to the client application code. In the case of Kong Mesh it is used to capture traffic and redirect it to kuma-dp so Mesh policies can be applied.

To accomplish this, Kong Mesh utilizes iptables and offers additional, experimental support for eBPF. The examples provided in this section will concentrate on iptables to clearly illustrate the point.

Below is a high level visualization of how Transparent Proxying works

A life without Transparent Proxying

If you choose to not use transparent proxying, or you are running on a platform where transparent proxying is not available, there are some additional considerations.

  • You will need to specify inbound and outbound ports to capture traffic on
  • .mesh addresses are unavailable
  • You may need to update your application code to use the new capture ports
  • No support for a VirtualOutbound

Without manipulating IPTables to redirect traffic you will need to explicitly tell kuma-dp where to listen to capture it. As noted, this can require changes to your application code as seen below:

Here we specify that we will listen on the address 10.119.249.39:15000 (line 7). This in turn creates an envoy listener for the port. When consuming a service over this 15000 it will cause traffic to redirect to 127.0.0.1:5000 (line 8) where our app is running.

  type: Dataplane
  mesh: default
  name: demo-app
  networking: 
    address: 10.119.249.39 
    inbound: 
      - port: 15000
        servicePort: 5000
        serviceAddress: 127.0.0.1
        tags: 
          kuma.io/service: app
          kuma.io/protocol: http

How it works

Inbound TCP Traffic

The inbound port, 15006, is the default for capturing requests to the system. This rule allows us to capture and redirect ALL TCP traffic to port 15006.

--append KUMA_MESH_INBOUND_REDIRECT --protocol tcp --jump REDIRECT --to-ports 15006

An envoy listener is also created for this port which we can see in the admin interface (:9901/config_dump). In the below example you can see the listener created on all interfaces (line 8) and port 15006 (line 9).

     "name": "inbound:passthrough:ipv4",
     "active_state": {
      "listener": {
       "@type": "type.googleapis.com/envoy.config.listener.v3.Listener",
       "name": "inbound:passthrough:ipv4",
       "address": {
        "socket_address": {
         "address": "0.0.0.0",
         "port_value": 15006
        }
       },
      ...
       "use_original_dst": true,
       "traffic_direction": "INBOUND",

Notice the setting use_original_dst (line 13). This listener will send traffic to a special type of cluster, ORIGINAL_DST. This is important since we are redirecting traffic here based on the IPtables rules, which means when this service was requested it was not likely it was requested over this port, 15006, but rather whatever the target application is listening on (i.e. demo-app port 5000)

     "name": "inbound:10.244.0.6:5000",
     "active_state": {
      "version_info": "9dac7d53-3560-4ad4-ba42-c7e563db958e",
      "listener": {
       "@type": "type.googleapis.com/envoy.config.listener.v3.Listener",
       "name": "inbound:10.244.0.6:5000",
       "address": {
        "socket_address": {
         "address": "10.244.0.6",
         "port_value": 5000
        }
       }
      }
     }

Using the Kuma counter demo app as an example, when the client needs to talk to the node app, it does not do so over 15006, but rather the actual application port, 5000. This is the “transparent” part of the proxying as it is not expected that apps will need to be redesigned or changed in any way to utilize mesh.

So, when the request comes into the system, the IPTables rule grabs the traffic and sends it to envoy port 15006. Once here, we check where the request was originally intended to go, in this case 5000 and forward it.

A further review of the envoy config will show our Node app listener where the IP address, 10.244.0.6, is that of the demo-app pod. Now that envoy is in control of the traffic we can now (optionally) apply filters/Mesh policies.

     "name": "inbound:10.244.0.6:5000",
     "active_state": {
      "version_info": "9dac7d53-3560-4ad4-ba42-c7e563db958e",
      "listener": {
       "@type": "type.googleapis.com/envoy.config.listener.v3.Listener",
       "name": "inbound:10.244.0.6:5000",
       "address": {
        "socket_address": {
         "address": "10.244.0.6",
         "port_value": 5000
        }
       },
          "filter_chains": [
            {
              "filters": [
                {
                  "name": "envoy.filters.network.http_connection_manager",
                  "typed_config": {
                    "@type": "type.googleapis.com/envoy.extensions.filters.network.http_connection_manager.v3.HttpConnectionManager",
                    "stat_prefix": "localhost_5000",
                    "route_config": {
                    "http_filters": [
                      {
                        "name": "envoy.filters.http.fault",
                        "typed_config": {
                          "@type": "type.googleapis.com/envoy.extensions.filters.http.fault.v3.HTTPFault",
                          "delay": {
                            "fixed_delay": "5s",
                            "percentage": {
                              "numerator": 50,
                              "denominator": "TEN_THOUSAND"
...

Outbound TCP Traffic

The outbound port, 15001, is the default for capturing outbound traffic from the system. That is, traffic leaving the mesh. This rule allow us to capture and redirect all TCP traffic to 15001.

--append KUMA_MESH_OUTBOUND_REDIRECT --protocol tcp --jump REDIRECT --to-ports 15001

An envoy listener is also created for this port which we can see in the admin interface (:9901/config_dump). In the below example you can see the listener created on all interfaces (line 8) and port 15001 (line 9). This will allow us to capture and outbound traffic policies.

     "name": "outbound:passthrough:ipv6",
     "active_state": {
      "listener": {
       "@type": "type.googleapis.com/envoy.config.listener.v3.Listener",
       "name": "outbound:passthrough:ipv6",
       "address": {
        "socket_address": {
         "address": "::",
         "port_value": 15001
        }
       },
      ...
       "use_original_dst": true,
       "traffic_direction": "OUTBOUND"
Thank you for your feedback.
Was this page useful?
情報が多すぎる場合 close cta icon
Kong Konnectを使用すると、より多くの機能とより少ないインフラストラクチャを実現できます。月額1Mリクエストが無料。
無料でお試しください
  • Kong
    APIの世界を動かす

    APIマネジメント、サービスメッシュ、イングレスコントローラーの統合プラットフォームにより、開発者の生産性、セキュリティ、パフォーマンスを大幅に向上します。

    • 製品
      • Kong Konnect
      • Kong Gateway Enterprise
      • Kong Gateway
      • Kong Mesh
      • Kong Ingress Controller
      • Kong Insomnia
      • 製品アップデート
      • 始める
    • ドキュメンテーション
      • Kong Konnectドキュメント
      • Kong Gatewayドキュメント
      • Kong Meshドキュメント
      • Kong Insomniaドキュメント
      • Kong Konnect Plugin Hub
    • オープンソース
      • Kong Gateway
      • Kuma
      • Insomnia
      • Kongコミュニティ
    • 会社概要
      • Kongについて
      • お客様
      • キャリア
      • プレス
      • イベント
      • お問い合わせ
  • 利用規約• プライバシー• 信頼とコンプライアンス
© Kong Inc. 2025